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"ON THE ASYMPTOTIC EFFICIENCY OF THE MAXIMUM
LIKELIHOOD ESTIMATOR AND A FUZZY

VERSION"l

by Antonio D. Baecav-

A. , Introduction

This paper is divided into two parts. The first part pre-'
sents the development in the proof of the asymptotic efficiency
of the maximum likelihood estimator. It starts with the classi
cal proof (1) which is valid only when a distribution function
follows the so-called regularity conditions. This proof has been
expanded by Wolfowitz(2) to accomodate more types of distri
bution functions as long as such distribution function satisfies
the so-called Uniformity Condition. The work of Wolfowitz is
valid only for one-dimensional parameter case. The extension
of this to n-dimensional parameter space has been worked out
by Kaufman (3).

The problem in the proof of the asymptotic efficiency of
the maximum likelihood estimator is that there still exist some
distribution functions that neithe.r satisfy the regularity condi
tion nor the uniformity conditions. Some examples of distribu
tion functions have been cited by Daniel (4). The question now
is; how does one show that the maximum likelihood estimator
of a particular distribution function is asymptotically efficient?
What Daniels did was to corne up with the conditions that are
satisfied by the so-called "non-regular" case distribution func
tions. Thus, if a given distribution function does not satisfy the
regularity condition but satisfies the conditions worked out by
Daniels, then the asymptotic efficiency of the maximum like
lihood estimator of that particular distribution function is as
sured. Unfortunately, distribution functions do not fall sim
ply in this two categories, there still exist some distribution
functions that defy regularity condition or the non-regular case.

1 Abstracted from M.S. Thesis of the same title.
2 Assistant Professor,. U.P.. Statistical Center



Recent developments in the proof for the asymptotic effi
ciency of the maximum likelihood estimator have been in the
direction of modification of the maximum likelihood estimator
itself and showing it to hold only as special case for some of
these modified estimators. For instance, Daniels has come up
with 8. smoothed maximum likelihood estimator. Actually, the
maximum likelihood estimator has been modified into this to
suit certain type of distribution functions. This modification
should not be taken as a generalization of the maximum likeli
hood estimator, unlike the next modification that is about to
follow. Weiss and Wolfowitz (5) have also done some extensions
by modifying the maximum likelihood estimator to make it
asymptotically efficient. They first call it "Generalized Maxi
mum Likelihood," but further refinement and extensions of the
said estimator have p.rompted them to revise it into the so
called "Maximum Probability Estimator."

The second part of this paper is the writer's discussion of
the problem of the asymptotic efficiency of the maximum like
lihood extimator using the concept of fuzzy sets develop by Za
deh (6) in 1965. Fuzzy set may be viewed as a generalization of
the ordinary set concept that we know of. In the set concept
that almost every statistician is familiar with nowadays, a given
element is either a member or not a member of a given set. We
can define a function that will show membership of an element
to a set. Far instance, we can let the value of a function equal
to 0 if a given element is not a member of a set, and the value
1 if a given element is a member of a set. Hence, the function
takes on two values only, 0 or 1, depending as to whether a given
element is not a member or a member of a given set. Fuzzy set
is similarly defined by a "membership" function whose counter
domain is any value between 0 and 1 inclusive; not only 0 or 1
as in ordinary set concept. The value of the membership func
tion of fuzzy set is interpreted as an indication of the "degree"
or grade of membership of a given element to a given set. In
effect, fuzzy sets have some flexibility in judging whether a
given element is a member more or less of a set or not by as
signing a vaue to its membership function intermediate between
o and. 1. In other words, ordinary set which give too rigid a
criteria for its membership function can be generalize to fuzzy
sets whose membership function is indicative of the degree. of
membership of a given element to a given set.

Fuzzy set becomes relevant to asymptotic efficiency because
the word "asymptotic" in itself is a sign of fuzziness ... The set'
of estimates generated by the maximum likelihood estimator,
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as n is varied, is a fuzzy set and for each estimate (for a given n),
we assign a grade of membership to show how close it is to the
true parameter. A solution to the problem of the· asymptotic
efficiency of the maximum likelihood estimator is attempted,
using fuzzy sets, by first showing the possibility of defining a
maximum likelihood estimator set that is fuzzy and then by es
tablishing that such a set includes an element or a subset of
elements whose membership function is the maximum among
all other elements of the maximum likelihood estimator set. The
concept of fuzzy sets, nevertheless, is still nascent and the es
tablishment of it on firmer and more rigorous grounds might
lead to a breakthrough for a comprehensive proof for the asymp
totic efficiency of the maximum likelihood estimator.

B. DEVELOPMENTS IN THE PROOF

Given a sample of size n, denoted by (x., XII)" the
.statistician will usually want to find the parameter of the distri
bution (usually known except for the parameter involved) to
which the sample comes from. The method of maximum like
lihood is usually used to estimate the parameter. However,
how sure are we that the estimator based from a sample of size
n is a "good" estimate of the parameter? We can never be sure,
but knowledge of the asymptotic distribution of the maximum
likelihood estimator, as the sample size n becomes large, makes
us confident to act as if the asymptotic distribution is the act.
ual distribution (which it is, to a close approximation). This·
assertion is the essence of the asymptotic efficiency of' the
maximum likelihood estimator.

The asymptotic efficiency of the maximum likelihood esti
mator then implies that the estimator is consistent and asymp
totically normal as n becomes large, and that the variance of

. the asymptotic distribution should equal to the Cramer-Rae
lower bounds.

R.A. Fisher(7), who popularized the method of maximum
likelihood, proposed a method of proving the asymptotic effi
ciency which later become the classical proof and was incorpo
rated in a book by Gramer(l) .. The method of proof basically
answers the two propositions stated above, namely, normality
is' first established on its asymptotic distribution and then its
consistency, as n becomes large, with the variance equalling
the Cramer-Rao lower bounds.



ANTONIO D. 'BACCAY

The classical proof relies heavily on the differentiation me
thods of calculus in locating the maximum of the likelihood
function. For this reason the regularity conditions are neces
sary prerequisites for the validity of the proof, for they provide
for the existence, particularly, of the second-order derivative
of the likelihood function. The regularity conditions are:

1. For almost all x, the partial derivatives alOga~( xl 0),

a210g f( xl 0), and a 310g f( xl 8), exist for all 0 which ~s' an ele-
, a02 303 .

mentof@

2. For every 0€<iD, we have af( xlO) < Al(x), a
2

f ( x/O)

ao a02
< ,A2( x) , and a

3
10g f( xl 0), < Z(x), 'the fUnctions Al and A2

" a0 3 00:

being integrable over ( - 00. + 00) whileJ~( x) f( x/8) dx <W,

where W is independent of 0 • :-:-00'

Soo ~ 2 '
:', 3.. For every 0 inGY , the integral-oorOg ~(X/OJ f(X/O)~X

is finite and positive. '
: ~ .

Cases are known, however, when the distribution function
does not satisfy ,the regularity conditions, hence asymptotic
efficiency cannot be ascertained using the classical approach.
This case which is generally known as the non-regular case, has
been' the subject of research in the literature and a particu
lar result by Daniels(4) is mentioned in this paper.

Daniels proposed two sets of sufficiency conditions to
treat the non-regular case. These weaker conditions for the
asymptotic efficiency are given which do not 'involve the second
derivative of' the .likelihood function. Again the method of
proof to show asymptotic efficiency is to show that the asymp
totic distribution of the estimator is consistent and normally
distributed wih variance equal to the Cramer-Rao lower bounds.
The set of sufficiency conditions' proposed by Daniels proved
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asymptotic efficiency without appeal to the Wald-Wolfowitz
result but there is a convexity requirement imposed which is
frequently not satisfied. The second set of conditions dispenses
wiIth the convexity requirement at the expense of some special
ization elsewhere, but consistency has to be established by the
Wald-Wolfowitz method. Nevertheless, these two sets of suf
ficiency conditions do not seem to be exhaustive enough to in
corporate all non-regular cases. Of course, it can be argued
that some non-regular cases which still do not fall under the two
sets of sufficiency conditions seldom occur in practice and may
be disregarded. However, a proposal which is to be accepted
as a theory must incorporate all possible cases. A more general
situation is considered where a modified maximum likelihood
procedure is shown still to yield an asymptotically efficient es
timator. Note now that a modified maximum likelihood is
defined to establish precisely its asymptotic efficiency.

Another limitation to the classical approach is the require
ment that other estimators have to be asympotically normal.
This presents a constraint to the practicing statistician who is
seeking an asymptocically efficient estimator that is reason
able in a satistically operational sense: Why should he be
limited only to estimators that are asymptotically normal'!
A partial answer to this is the inadequacy of a basis for
comparing the amount of condensation of a normal and a non
normal distribution, if estimators are not restricted to asymp
totically normal ones. A better argument, however, has' been
proposed by Wolfowitz(2) and has got .to do with generalizing
the limiting distribution of the other estimators. The condi
tion he imposed on competing estimators, aside from the usual
regularity conditions similar to that of Cramer is called, the
Uniformity Condition. The Uniformity Condition is stated as:

When f(°/0) is the density of the Xi' the distribution o~

'rIi(Bn - 8~ approaches a limiting distribution of D(o/O) which'
may depend on 0, uniformly in both arguments of D( for 0 e®) •

Wolfowitz's work may be regarded as an extension of Cra
mer's work for he assumes the density function to satisfy. the
regularity conditions also. As a matter of fact, the regularity
conditions imposed by Wolfowitz is an expanded version of
Cramer's. It incorporates already some established ideas that
have been developed since Cramer's proof, like the works of
Wald(8) on the consistency of the maximum likelihood esti
mator and other major theoretical results in statistics.
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The proof of Wolfowitz consisted of six lemmas and one
main theorem. The methods of proof is no longer the same as
Cramer or Daniels where consistency and asymptotic normality
with minimum variance imply asymptotic efficiency. The rea
son for this is that we no longer limit ourselves to asymptoti
cally normal competing estimators. The lemmas are proven to
establish the mathematical rigor of the limiting distribution

•

•D(x/O). Also we define
K(81) = lim sup{u(8)/81 < 8 < 81 + 5)

0+0
and

<B.l)

•
k(01) = lim inf(r(O)/Ol - 5 <°<0l)i (B.2)

8+0
With these definition'the final result of Wolfowitz is stated as:

-
lim P( ., m < y!ii(On - 8 ) < h/Oo)
n+oo

, (B.3)

•••
where (Bn ) is a sequence of estimators that satisfy the regu- •
larity conditions and the uniformity condition. Go is the true
parameter and nand h are arbitrary positive numbers.

It was left to Kaufman(3) to extend Wolfowitz result to
;the multidimensional parameter case. That is, for any ana-'.
logously uniform (Bn) and any convex symmetric set S < Rk, we

have; 'l.£r(O), u(O)] is the median interval of D('1').

lim P(v'ii( On - 0) E S) <~ p(·yn(Hn - 0) E S), <B.4)
n+oo '. n+oO

The uniformity condition imposed on estimator sequences
is somewhat. weakened. This leads to a corresponding weaken
ing of the result, but such modification seems to be necessary
if we wish not to exclude many reasonable estimators, The
proof also assumes any regularity condition that implies the
uniform asymptotic joint-normality of yn (Gn-Q) and the asymp
totic sufficiency of (6..).

•
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The method of proof is based on a theorem by T.W. An
derson (9) which states that if H and I are independent random
K-vectors and if I has a probability density characterized by
convex symmetric levels, then for any convex symmetric set

SC Rk;
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P( H + I E S) < P( I E S)

7

(B.5)

A symmetrized version of this in terms of our problem is,

Poh!n( Bn - 0) E S) = Po<vn< Bn - On) +yn( On - 0) E S)<B.6)
and that asymptotically y'i1(°n - 0) satisfies the hypothesis for 1.

Hence, if itwere possible to show that yn( Bn - On)

andyn( On - 0) were in some sense "asymptotically independent"
then it becomes reasonable to expect that the Anderson's thorem
might apply asymptotically:

~

•..
lim P(vn( On- 0) E S)
n~oo

limP(y'i1(Bn-On) +yn(On-O) ES).
n~oo

(B.6)

•

•

•
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•

Actually, such a program cannot be carried out directly.

By making use of the concept of asymptotic sufficiency
of the maximum likelihood estimator (thus, the necessity of
incorporating this as part of the regularity condition), we can
define a "modified maximum likelihood" and competing esti
mators in place of ell and Bn in such a way that asymptotic
probabilities in convex symmetric sets are preserved while at
the same time the above mentioned properties of asymptotic
independence is attained. This modification process constitutes
the bulk of the lemmas proven by Kaufman before his main
theorem on the asymptotic efficiency of the maximum likeli
hood estimator for multidimensional parameter space.

Like Daniels, Weiss & Wolfowitz(5) have defined a new
estimator which is asymptotically efficient even for the non
regular case. This new estimator is said to be a generalization
of the maximum likelihood estimator or rather, the maximum
likelihood estimator is a special case when the regularity con
ditions are assumed. This new estimator is' called Maximum
Probability Estimator.



8 ANTONIO D. BACCAY

••
G. A Fuzzy Interpretation

One new concept that might perhaps lead to a comprehen
sive proof of the asymptotic efficiency: of the maximum likeli
hood estimator without even modifying the same is the con
cept of "fuzzy sets" introduced by Zadeh (6) in 1965. As the
world implies, fuzzy sets deal with "classes" or "sets" that
do not have precisely defined criteria of membership. It is
this type of imprecision that arises when we say,
for example, that a class of integer is much greater than 11
since the set of integers cannot be divided dichotomously into
those that are much greater than n and those that are not for
just how much is much greater. In general, what distinguishes
such classes from classes that are well-defined in the conven
tional mathematical sense is the fuzziness of their boundaries.
In effect, in the case with a fuzzy boundary, an object may
have a grade of membership in it that lies somewhere between
full membership and non-membership. Thus, a class that ad
mits of the possibility of partial membership in it is called 11

fuzzy set.

We make a fuzzy statement or assertion when some of the
words appearing in the statement or assertion in question are
indicative of fuzzy sets. For example:

1. Juan de la Cruz married young. The class of men who
married "young" is a fuzzy set because "young" to some may no
longer look "young" to others.

2. Maria is beautiful. The class of "beautiful" women
is fuzzy because what is beautiful to some may not be beauti
ful to others and the criteria are oftentimes subjective;

3. "y is approximately equal to 10" is fuzzy because we
do not exactly know what value should y take to qualify as
"approximately" equal to 10;

4. "x is much larger than 30," is also fuzzy because we
do not know exactly what x should be in order for it to be called
"much larger" than 30.

In these statements, the source of fuzziness are the underlined
phases, which in effect define fuzzy sets.

Fuzzy sets become' relevant to asymptotic efficiency be
cause the word "asymptotic" in itself is a sign of fuzziness.

'.
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In this case we take the sets of estimates generated by the
maximum likelihood estimator (we shall assume unidimentional
parameter space for simplicity), as net> is varied, as a fuzzy
set and for each estimates (for a given sample size), we assign
a grade of membership to show how close it is to the (un-
known) true parameter. .

Before proceeding any further, however, let us first for-
mally define a fuzzy set as: .

Definition C.l: Let Z = (z) denote a set of points (ob
jects) with z denoting a generic element of Z. Then a fuzzy
set A ·in Z is a set of ordered pairs,

A=[(Z,AA(Z»), zEZ, «i.n

...

•"
•

•

•

where AA(z) is called the "grade of membership" of z in A. Thus,
if AA(z) takes value in a space 1f - called the membership space ~

then A is basically a function from z to n, The function Aa: z-l-1f.
that defines A, is called the membership function of A. (When tt

contains only two points 0 and 1, then A is not fuzzy and its
membership function is the same as the usual characteristic func
tion.)

A fuzzy set A in Z is a class without sharply defined boun..
daries, that is, a class in which a point or object z may have a
grade of membership somewhere between full membership and
nonmembership. The important point to consider is that such
a fuzzy set can be defined precisely by associating each zits
grade of membership in A. We shall assume for simplicity

that tt is the interval (0,1), with the grade 1 representing full mem
bership on a fuzzy set. Therefore, a fuzzy set A in Z, although
lacking in sharpy defined boundaries can be precisely character
ized by a membership function that associates with each z in Z a
number in the interval (0,1) representing the grade of membership
of z in A.

It is important to consider also that in the case of a fuzzy
set, it does not make sense to say that an object belongs or
does not belong to a particular set, except for objects whose
grade of membership 'in the set is 0 or 1/. Hence, if A is the
fuzzy set of beautiful women, then the statement; "Maria is
beautiful" should not be interpreted to mean that Maria belongs
to A. Such a statement should rather be interpreted as an
association of Maria to a fuzzy set A, as associaton which will
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be denoted by,

Maria E A, <C.2a>
n

to distinguish if from an assertion of belonging in the usual non
fuzzy set, that is,

Maria E A, <C.2b)

which is meaningful only when A is not fuzzy.

It should be noted also that the imprecision due to fuzzi
ness does not stem from randomness but from a lack of sharp
transition from membership in a class to nonmembership in it.
Although the membership function of a fuzzy set has some sem
blance to a probability function, they differ essentially from
each other; the notion of a fuzzy set is nonstatistical in nature.
Correspondingly, the mathematical techniques for dealing with
fuzziness are quite different from those of probability theory.
The notion of probability measure in probability theory corres
ponds the simpler notion of membership function in the theory
of fuzziness [1b].

We mention above that the statement "as n approaches in
finity," is fuzzy. Recalling that n here refers,to the sample size,
we can find the maximum likelihood estimate On,given n, as long
as it satisfy the condition that L(O, S) <;. L(O, S). Of course, given

'-', n, w.e can generate a set of values for 0n by simply varying the
composition of the sample. This set of values is random, by nature,
and contains the maximum likelihood estimator. Consider only,
however, a representative value of the maximum likelihood estima
tor, say, the mode. In general, the criterion for the representative
value would be to select that particular maximum likelihood esti
mate that closely resemble the (unknown) true parameter 00 ,

Actually, however, we do not know the true parameter 00 , The set
of values of the maximum likelihood estimate, given n, will have a
unimodal distribution and possibly symmetric, so that we can take
the mode" as the representative value because that value occurs the
most number of times and not much computation is involved in
locating it. Hence, by definition of the maximum likelihood esti
mator, the mode must resemble quite closely the true parameter

'» 0 than any other maximum likelihood estimate for a given n.
Let us designate the mode of the maximum likelihood estimator as

Bon'

..

•
•
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Consider now the set of modes of the maximum likelihood
estimator, called it the maximum likelihood estimator set, M, as n
varies from one to infinity. This may be designated also as

M = [° 0 1-002, ... , 0on' ... r <C.3)

Obviously, M is finite if the population is finite, otherwise it is in
finite. Moreover, M is a subset of the parameter space 0.

Let us examine the elements of M. Each of these elements esti- ,
mates that (unknown) true parameter fJo' Intuitively, as we in
crease the sample size, we expect the estimate to closely resemble

~he. true parameter °o- That is 80 2, would be less efficient that
0015, and becomes more efficient as n becomes larger. For a
finite population N, it will be feasible to compute the true para
meter eo, and we can 'see that the maximum likelihood estimator
set , M, will 'contain a sequence of elements of estimators whose
value' will tend to the computed true parameter fJ o- For infinite
population, the same tendency will also hold but now we haveno
idea.what the limit is because we do 'not exactly know the value of
the true parameter 0o- This would imply that the elements of the
maximum likelihood estimator set is not random and have a ten
dency to cluster about a particular point, which we know as the
true parameter fJo' The non-randomness of the maximum likeli
hood estimator set is further strengthen by the fact that since the

. elements of this set are the modes of any' representative value, that
means that we are preassigning the values of the maximum likeli
hood estimator set so as to give it an estimate that is most likely to
occur.

. Moreover, it is possible to associate a membership function,
. called it ~M(@),.that specifiesAthe degree or grade of membership
orclosedness of a particular eon to the .true parameter 00' For
finite population, this will be computationally possible for °0 can
be computed precisely, but for infinite population or for a finite
population with a very large N, the definition of the membership
function might be quite difficult to specify. 'Nevertheless, it is still
logically possible.

Hence, 'We can define the maximum likelihood estimator set,
M, asa fuzzy ~t..

Definition .C.2: Let ® ~ [0] denote a space of points with eon
denoting a generic element of @. Then a fuzzy set M in <@ is a set
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of ordered pairs

M = [(eon, AM(®))], eon E e, (C.4)

where AM(Oon) is called the grade of membership of eon in M.

For simplicity, let AM(O) take value in the space (0,1). That is,
if particular °on' deviates considerably from the true parameter°0 , then the value of its membership function is close to zero,
otherwise it becomes close to 1.

The choice of the mode as the representative value for the
maximum likelihood estimator, given n, may not be operation
ally .feasible. ' It means that for a particular sample of size n,
we have, to exhaustively compute all the. maximum likelihood
estimates, as we vary .the composition of the sample. Hence,
even with the use of computers, for each particular n and as
we 'vary n, the computation of the maximum likelihood esti
mates, in order to identify that which occur the most number
or-times, would indeed be very tedious and sometimes imprac
tical. Perhaps an alternative choice would be to select a par
ticular sample of size n, and, then compute the maximum like-

lihood estimate, 8Hn' Let that be representative value when
n = n1. Then to compute a representative value when n = J?1 +
1 = n2, we retain the sample of size n1, and simply pick one more
element to increase the size to n1 + 1 = N2 and then compute the
maximum likelihood estimate based on this particular sample size
n2. This process may be continued to generate the elements of the
set. '

Having defined the maximum likelihood estimator set as fuzzy,
we' now proceed to show the procedure that could lead to its.
asymptotic efficiency. Recall that the asymptotic efficiency of the
maximum likelihood estimator is the following: For large sample
size, n, the maximum likelihood estimate, On' approximates close
ly the unknown true parameter °o.

Let ex: be any real number near 1 but never greater than 1. The
asymptotic efficiency of the maximum likelihood e~imator set
w.;ould be equivalent to showing that ex: = Max AM(OoM). More
generally, let (C(M) be the subset of aU points in M at which ex: is
essentially attained, then this subset is called the core of M.. ,. -

•
•

•
•
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The idea behind the proposed equivalence above is that the
maximum likelihood estimator set is an increasing sequence of
points leading to eo' Now, since 0: is very close to 1 (but never
greater than 1), and since 0: is the maximum of all the values of
the membership function for M, then the maximum likelihood
estimate with the highest sample size must approximate closely
the true parameter e. For finite population we expect 0: to equal 1
when the sample size equals the population size, for in this, case
the true parameter eo can be computed precisely; but for infinite
population. we expect it to tend to 1.

In effect, the numerical value of a may be taken as a quan
titative measure of the asymptotic 'efficiency of any .. estimator.
That is, an estimator with an a closer to" 1 would': be more
asymptotically efficient than one further from it. Thus, we
can also show that the maximum likelihood estimator set con
tains the most asymptotically efficient estimates among all other
estimators. In this case, we have to estabish that the "para
meter space" generated by the different types of estimators
are fuzzy. This can be done, logically, in the same way that the
maximum likelihood estimator set was established.

The concept of fuzzy sets is still nascent and perhaps will
take sometime for it to be well-established. The establishment
of the concept on firmer and more rigorous grounds could be
one breakthrough into a unification of the proof for the asymp
totic efficiency of the maximum likelihood estimator. More ri
.gorous development in the concept of fuzzy sets itself is also
awaited. Until such an appropriate time, a detailed and rigo
rous proof will be in order which will definitely constitute an
interesting topic for further research.
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