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“ON THE ASYMPTOTIC EFFICIENCY OF THE MAXIMUM
LIKELIHOOD ESTIMATOR AND A FUZZ
VERSION"! '

by Antonio D. Baccay?

A. . Introduction

This paper is divided into two parts. The first part pre-
sents the development in the proof of the asymptotic efficiency
of the maximum likelihood estimator. It starts with the classi-
cal proof (1) which is valid only when a distribution function
follows the so-called regularity conditions. This proof has been
expanded by Wolfowitz(2) to accomodate more types of distri-
bution functions as long as such distribution function satisfies
the so-called Uniformity Condition. The work of Wolfowitz is
valid only for one-dimensional parameter case. The extension
of this to n-dimensional parameter space has been worked out
by Kaufman(3).

The problem in the proof of the asymptotic efficiency of
the maximum likelihood estimator is that there still exist some
distribution functions that neither satisfy the regularity condi-
tion nor the uniformity conditions. Some examples of distribu-
tion functions have been cited by Daniel(4). The question now
is; how does one show that the maximum likelihood estimator
of a particular distribution function is asymptotically efficient?
What Daniels did was to come up with the conditions that are
gatisfied by the so-called “non-regular” case distribution func-
tions. Thus, if a given distribution function does not satisfy the
regularity condition but satisfies the conditions worked out by
Daniels, then the asymptotic efficiency of the maximum like-
lihood estimator of that particular distribution function is as-
sured. Unfortunately, distribution functions do not fall sim-
ply in this two categories, there still exist some distribution
functions that defy regularity condition or the non-regular case.

1 Abstracted from M.S. Thesis of the same title.
2 Assistant Professor, . U.P, Statistical Center
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Recent developments in the proof for the asymptotic effi-
ciency of the maximum likelihood estimator have been in the
direction of modification of the maximum likelihood estimator
itself and showing it to hold only as special case for some of
these modified estimators. For instance, Daniels has come up
with & smoothed maximum likelihood estimator. Actually, the
maximum likelihood estimator has been modified into this to
suit certain type of distribution functions. This modification
should not be taken as a generalization of the maximum likeli-
hood estimator, unlike the next modification that is about to
follow. Weiss and Wolfowitz (5) have also done some extensions
by modifying the maximum likelihood estimator to make it
asymptotically efficient. They first call it “Generalized Maxi-
mum Likelihood,” but further refinement and extensions of the
said estimator have prompted them to revise it into the so-
called “Maximum Probability Estimator.”

The second part of this paper is the writer's discussion of
the problem of the asymptotic efficiency of the maximum like-
lihood extimator using the concept of fuzzy sets develop by Za-
deh(6) in 1965. Fuzzy set may be viewed as a generalization of
the ordinary set concept that we know of. In the set concept
that almost every statistician is familiar with nowadays, a given
element is either a member or not 2 member of a given set. We
can define a function that will show membership of an element
to a set. For instance, we can let the value of a function equal
to 0 if a given element is not a member of a set, and the value
1 if a given element is a memker of a set. Hence, the function
takes on two values only, 0 or 1, depending as to whether a given
element is not a member or a member of a given set. Fuzzy set
is similarly defined by a “membership” function whose counter-
domain is any value between 0 and 1 inclusive; not only 0 or 1
as in ordinary set concept. The value of the membership func-
tion of fuzzy set is interpreted as an indication of the “degree”
or grade of membership of a given element to a given set. In
effect, fuzzy sets have some flexibility in judging whether a
given element is a member more or less of a set or not by as-
signing a vaue to its membership function intermediate between
0 and 1. In other words, ordinary set which give too rigid a
criteria for its membership function can be generalize to fuzzy
sets whose membership function is indicative of the degree of
membership of a given element to a given set.

Fuzzy set becomes relevant to asymptotic efficiency because
the word “asymptotic” in itself is a sign of fuzziness. - The set
of estimates generated by the maximum likelihood estimator,
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as n is varied, is a fuzzy set and for each estimate (for a given n),
we assign a grade of membership to show how close it is to the
true parameter. A solution to the problem of the asymptotic
efficiency of the maximum likelihood estimator is attempted,
using fuzzy sets, by first showing the possibility of defining a
maximum likelihood estimator set that is fuzzy and then by es-
tablishing that such a set includes an element or a subset of
elements whose membership function is the maximum among
all other elements of the maximum likelihood estimator set. The
concept of fuzzy sets, nevertheless, is still nascent and the es-
tablishment of it on firmer and more rigorous grounds might
lead to a breakthrough for a comprehensive proof for the asymp-
totic efficiency of the maximum likelihood estimator.

B. DEVELOPMENTS IN THE PROOF

Given a sample of size n, denoted by (x,,...... X.), the
statistician will usually want to find the parameter of the distri-
bution (usually known except for the parameter involved) to
which the sample comes from. The method of maximum like-
lihood is usually used to estimate the parameter. However,
how sure are we that the estimator based from a sample of size
nis a “good” estimate of the parameter? We can never be sure,
but knowledge of the asymptotic distribution of the maximum

- likelihood estimator, as the sample size n becomes large, makes

us confident to act as if the asymptotic distribution is the act-
ual distribution (which it is, to a close approximation). This
assertion is the essence of the asymptotic efficiency of the
maximum likelihood estimator.

The asymptotic efficiency of the maximum likelihood esti-
mator then implies that the estimator is consistent and asymp-
totically normal as n becomes large, and that the variance of

" the asymptotic distribution should equal to the Cramer-Rao

lower bounds.

R.A. Fisher(7), who popularized the method of maximum
likelihood, proposed a method of proving the asymptotic effi-
ciency which later become the classical proof and was incorpo-
ratéd in a book by Gramer(1l). The method of proof basically
answers the two propositions stated above, namely, normality

. is first established on its asymptotic distribution and then its

consistency, as n becomes large, with the variance equalling
the Cramer-Rao lower bounds. '
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The classical proof relies heavily on the differentiation me-
thods of calculus in locating the maximum of the likelihood
function. For this reason the regularity conditions are neces-
sary prerequisites for the validity of the proof, for they provide
for the existence, particularly, of the second-order derivative
of the likelihood function. The regularity conditions are:

1. For almost all x, the partial derivatives dlo a(f9( x/8),

aélog_f(k/ 8), and 83log f(x/8), exist for all § which is an ele-
362 363

ment of ®

at(x/0)| 321(x/0)

30 362
< Z(x), the functions Ay and Ag

2. For every 0e®, we have < Aq(x),

3310g £( x/0)

39 3 o
bemg mtegmb}e over ( — o0, + o0) whilejz( x)f(x/0) dx <W,

=00’

< Ag(x), and

where W is independent of 6 .

. 8. Forevery 0 in @ , the mtegraljtl_?_g_f(x_/o.)} f(x/ O)dx

1s fxmte and positive. - ‘

Cases are known, however, when the distribution function
does not satisfy thé regularity conditions, hence asymptotic
efficiency cannot be ascertained using the classical approach.
This case which is generally known as the non-regular case, has
been the subject of research in the literature and a particu-
lar result by Daniels(4) is mentioned in this paper.

~ Daniels proposed two sets of sufficiency conditions to
treat the non-regular case. These weaker conditions for the
asymptotic efficiency are given which do not involve the second
derivative of the likelihood function. Again the method of
proof to show asymptotic efficiency is to show that the asymp-
totic distribution of the estimator is consistent and normally
distributed wih variance equal to the Cramer-Rao lower bounds.
The set of sufficiency conditions proposed by Daniels proved

»
N
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asymptotic efficiency without appeal to the Wald-Wolfowitz
result but there is a convexity requirement imposed which is
frequently not satisfied. The second set of conditions dispenses
with the convexity requirement at the expense of some special-
jzation elsewhere, but consistency has to be established by the
Wald-Wolfowitz method. Nevertheless, these two sets of suf-
ficiency conditions do not seem to be exhaustive enough to in-
corporate all non-regular cases. Of course, it can be argued
that some non-regular cases which still do not fall under the two
sets of sufficiency conditions seldom occur in practice and may
be disregarded. However, a proposal which is to be accepted
as a theory must incorporate all possible cases. A more general
situation is considered where a modified maximum likelihood
procedure is shown still to yield an asymptotically efficient es-
timator. Note now that a modified maximum likelihood is
defined to establish precisely its asymptotic efficiency.

Another limitation to the classical approach is the require-
ment that other estimators have to be asympotically normal.
This presents a constraint to the practicing statistician who is
seeking an asymptocically efficient estimator that is reason-
able in a satistically operational sense: Why should he be
limited only to estimators that are asymptotically normal?
A partial answer to this is the inadequacy of a basis for
comparing the amount of condensation of a normal and a non-
normal distribution, if estimators are not restricted to asymp-
totically normal ones. A better argument, however, has been
proposed by Wolfowitz(2) and has got to do with generalizing
the limiting distribution of the other estimators. The condi-
tion he imposed on competing estimators, aside from the usual
regularity conditions similar to that of Cramer is called, the
Uniformity Condition. The Uniformity Condition is stated as:

When £(©/6) is the density of the X, the distribution of

(B, — 6) approaches a limiting distribution of D(°/6) which
. may depend on 0, uniformly in both arguments of D( for 6 €®).

Wolfowitz’s work may be regarded as an extension of Cra-
mer’s work for he assumes the density function to satisfy the
regularity conditions also. As a matter of fact, the regularity
conditions imposed by Wolfowitz is an expanded version of
Cramer’s. It incorporates already some established ideas that
have been developed since Cramer’s proof, like the works of
Wald(8) on the consistency of the maximum likelihood esti-
mator and other major theoretical results in statistics.
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The proof of Wolfowitz consisted of six lemmas and one
main theorem. The methods of proof is no longer the same as
Cramer or Daniels where consistency and asymptotic normality
with minimum variance imply asymptotic efficiency. The rea-
son for this is that we no longer limit ourselves to asymptoti-
cally normal competing estimators., The lemmas are proven to
establish the mathematical rigor of the limiting distribution

D(x/0). Also we define

K(61) = lim sup{u(6)/0, <6 <0, + &) (B.1)
&%
and i : .
k(61) = lim inf(r(9)/0; — § <0 <0)! (B.2)
>0

With these definition the final result of Wolfowitz is stated as:

imP(=m<+\/A(0,-8)<hb,) ' (B.3)

nroo

lim P(—m + k(6,) < /B(B,—0,) <h +K(6)/8,),|
.r?-)oo :

where (B,) is a sequence of estimators that satisfy the regu-
larity conditions and the uniformity condition. &, is the true
parameter and n and h are arbitrary positive numbers.

It was left to Kaufman(3) to extend Wolfowitz result to
the multidimensional parameter case. That is, for any ana-

logously uniform (B, ) and any convex symmetric set S < Rk, we
have; '1'[r(0), u(#)] is the median interval of D(-/).

lim P(y/Ti(0,,— 8) €5) <lmFy/A(B,~06) €S), (B4

nre° n»oe

The uniformity condition imposed on estimator sequences
is somewhat. weakened. This leads to a corresponding weaken-
ing of the result, but such modification seems to be necessary
if we wish not to exclude many reasonable estimators. The
proof also assumes any regularity condition that implies the
uniform asymptotic joint-normality of v/n(8.-Q) and the asymp-
totic sufficiency of (€.).

4
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The method of proof is based on a theorem by T.W. An-
derson (9) which states that if H and I are independent }'andom
K-vectors and if I has a probability density characterized by
convex symmetric levels, then for any convex symmetric set

S C Rk;
P(H+1ES) <P(IES) (B.5)
A symmetrized version of this in terms of our problem is,

Py(v/N( By —0) €8) = Py(/n(B,—0,) ++/n(0,, ~0) €8) (B.6)
and that asymptotically \/n( 0,— 0) satisfies the hypothesis for I.
Hence, if itwere possible to show that +/n(B,—0.)
and/n( 0n —0) were in some sense ‘“asymptotically independent”
then it becomes reasonable to expect that the Anderson’s thorem
might apply asymptotically:

lim P(v/n(0,—0) €S)

n»>co

lim P(V/A(B, = 0,) +v/n(0,-0) €S). (B.6)
n*oo

Actually, such a program cannot be carried out directly.

By making use of the concept of asymptotic sufficiency
of the maximum likelihood estimator (thus, the necessity of
incorporating this as part of the regularity condition), we can
define a “medified maximum likelihood” and competing esti-
mators in place of £, and B, in such a way that asymptotic
probabilities in convex symmetric sets are preserved while at
the same time the above mentioned properties of asymptotic
independence is attained. This modification process constitutes
the bulk of the lemmas proven by Kaufman before his main
theorem on the asymptotic efficiency of the maximum likeli-
hood estimator for multidimensional parameter space.

Like Daniels, Weiss & Wolfowitz(5) have defined a new
estimator which is asymptotically efficient even for the non-
regular case. This new estimator is said to be a generalization
of the maximum likelihood estimator or rather, the maximum
likelihood estimator is a special case when the regularity con-
ditions are assumed. This new estimator is called Maximum
Probability Estimator.
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G. A Fuzzy Interpretation

One new concept that might perhaps lead to a comprehen-
sive proof of the asymptotic efficiency: of the maximum likeli-
hood estimator without even modifying the same is the con-
cept of ‘“fuzzy sets” introduced by Zadeh(6) in 1965. As the
world implies, fuzzy sets deal with “classes” or “sets” that
do not have precisely defined criteria of membership. It is
this type of imprecision that arises when we say,
for example, that a class of integer is much greater than n
since the set of integers cannot be divided dichotomously into
those that are much greater than n and those that are not for
just how much is much greater. In general, what distinguishes
such classes from classes that are well-defined in the conven-
tional mathematical sense is the fuzziness of their boundaries.
In effect, in the case with a fuzzy boundary, an object may
have a grade of membership in it that lies somewhere between
full membership and non-membership. Thus, a class that ad-
mits of the possibility of partial membership in it is called a
fuzzy set.

We make a fuzzy statement or assertion when some of the
words appearing in the statement or assertion in question are
indicative of fuzzy sets. For example:

1. Juan de la Cruz married young. The class of men who
married “young” is a fuzzy set because “young” to some may no
longer look “young” to others.

2. Maria is beautiful. The class of “beautiful” women
is fuzzy because what is beautiful to some may not be beauti-
ful to others and the criteria are oftentimes subjective;

3. “3; is approximately equal to 10” is fuzzy becau.se we
do not exactly know what value should y take to qualify as
“approximately” equal to 10;

4. “x is much larger than 30,” is also fuzzy because we
do not know exactly what x should be in order for it to be called
“much larger” than 30.

In these statements, the source of fuzziness are the underlined
phases, which in effect define fuzzy sets.

Fuzzy sets become relevant to asymptotic efficiency be-
cause the word “asymptotic” in itself is a sign of fuzziness.

®
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In this case we take the sets of estimates generated by the
maximum likelihood estimator (we shall assume unidimentional
parameter space for simplicity), as n¢ is varied, as a fuzzy
set and for each estimates (for a given sample size), we assign
a grade of membership to show how close it is to the (un-
known) true parameter. '

Before proceeding any further, however, let us first for-
mally define a fuzzy set as:

. Definition C.1: Let Z = (z) denote a set of points (ob-
jects) with z denoting a generic element of Z. Then a fuzzy
set A-in Z is a set of ordered pairs,

A=[Z,\\(2D], zEZ, (D

where Aj(z) is called the “‘grade of membership” of z in A. Thus,
if Ap(z) takes value in a space 7 - called the membership space -
then A is basically a function from z to 7. The function \,:z>m,
that defines A, is called the membership function of A. (When w
contains only two points O and 1, then A is not fuzzy and its
membership function is the same as the usual characteristic func-
tion.)

A fuzzy set A in Z is a class without sharply defined boun-
daries, that is, a class in which a point or object z may have a
grade of membership somewhere between full membership and
nonmembership. The important point to consider is that such

a fuzzy set can be defined precisely by associating each z its
grade of membership in A. We shall assume for simplicity

that 7 is the interval (0,1), with the grade 1 representing full mem-
bership on a fuzzy set. Therefore, a fuzzy set A in Z, although
lacking in sharpy defined boundaries can be precisely character-
ized by a membership function that associates with each z in Z a
number in the interval (0,1) representing the grade of membership
of zin A. .

It is important to consider also that in the case of a fuzzy
set, it does not make sense to say that an object belongs or
does not belong to a particular set, except for objects whose
grade of membership in the set is O or 1/. Hence, if A is the
fuzzy set of beautiful women, then the statement; “Maria is
beautiful” should not be interpreted to mean that Maria belongs
to A. Such a statement should rather be interpreted as an
association of Maria to a fuzzy set A, as associaton which will
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be denoted by,
Maria € A, (C.2a)
n

to distinguish if from an assertion of belonging in the usual non-
fuzzy set, that is,

Maria € A, (C.2b)
which is meaningful only when A is not fuzzy.

_ It should be noted also that the imprecision due to fuzzi-
ness does not stem from randomness but from a lack of sharp
transition from membership in a class to nonmembership in it.
Although the membership function of a fuzzy set has some sem-
blance to a probability function, they differ essentially from
each other; the notion of a fuzzy set is nonstatistical in nature.
Correspondingly, the mathematical techniques for dealing with
fuzzmesg are quite different from those of probability theory.
The notion of probability measure in probability theory corres-
ponds the simpler notion of membership function in the theory

of fuzziness [1b].

We mention above that the statement ‘‘as n approaches in-
finity,” is fuzzy. Recalling that n here refers to the sample size,
we can find the maximum likelihood estimate 0,,, given n, as long
as it satisfy the condition that L(8, S) < L(8, S). Of course, given
+ n, we can generate a set of values for 8, by simply varying the
composition of the sample. This set of values is random, by nature,
and contains the maximum likelihood estimator. Consider only,
however, a representative value of the maximum likelihood estima-
tor, say, the mode. In general, the criterion for the representative
value would be to select that particular maximum likelihood esti-
mate that closely resemble the (unknown) true parameter 0.
Actually, however, we do not know the true parameter 6. The set
of values of the maximum likelihood estimate, given n, will have a
unimodal distribution and possibly symmetric, so that we can take
the mode as the representative value because that value occurs the
most number of times and not much computation is involved in
locating it. Hence, by definition of the maximum likelihood esti-
Jnator, the mode must resemble quite closely the true parameter
0o than any other maximum likelihood estimate for a given n.
Let us designate the mode of the maximum likelihood estimator as

Oon-

f
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Consider now the set of modes of the maximum likelihood

estimator, called it the maximum likelihood estimator set, M, as n
varies from one to infinity. This may be designated also as

M=10p1.002, . 00n, .1 (C.3)

Obviously, M is finite if the population is finite, otherwise it is in-
finite. Moreover, M is a subset of the parameter space ®.

Let us-examine the elements of M. Each of these elements esti- .
mates that (unknown) true parameter 0,. Intuitively, as we in-
crease the sample size, we expect the estimate to closely resemble

the true parameter ,. That is 6,9, would be less efficient that
0515, and becomes more efficient as n becomes larger. For a
finite population N, it will be feasible to compute the true para-
meter 0, and we can see that the maximum likelihood estimator
set , M, will ‘contain a sequence of elements of estimators whose
value w111 tend to the computed true parameter f,. For infinite
population, the same tendency will also hold but now we have'no
idea.what the 11m1t is because we do not exactly know the value of
the true parameter 0. This would imply that the elements of the
maximum likelihood estxmato; set is not random and have a ten-
dency to cluster about a particular point, which we know as the
true parameter 6,. The non-randomness of the maximum likeli-
hood estimator set is further strengthen by the fact that since the

" elements of this set are the modes of any representative value, that

means that we are preassigning the values of the maximum likeli-
hood estimator set so as to give it an estimate that is most likely to
occur.

. Moreover, it is possible to associate a membership function,

~called it \p(@),.that spec1f1es the degree or grade of membership

or.closedness of a particular f,n to the true parameter 0. For
finite population,.this will be computationally possible for 00 can
be computed precisely, but for infinite population or for a fmlte
population with a very large N, the definition of the membershxp
function might be quite difficdlt to specify. Nevertheless, it is still
logically possible.

Hence, we can define the maxnmum likelihood estlmator set
M, as a fuzzy set.

Definition C.2: Let ® = [0]denote a space of points with 0y,
denoting a generic element of ®. Then a fuzzy set M in ® is a set
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of ordered pairs

M =[G, \p(®P), Bon €@, (C.4)

where )‘M(Oon) is called the grade of membership of éon in M.

For simplicity, let A\pf(6) take value in the space (0,1). That is,
if particular 6, deviates considerably from the true parameter
64, then the value of its membership function is close to zero,
otherwise it becomes close to 1.

The choice of the mode as the representative value for the
maximum likelihood estimator, given n, may not be operation-
ally .feasible.. - It means that for a particular sample of size n,
we have to exhaustively compute all the maximum likelihood
estimates, as we vary the composition of the sample. Hence,
even with the use of computers, for each particular n and as
we vary n, the computation of the maximum likelihood esti- -
mates, in order to identify that which occur the most number
of times, would indeed be very tedious and sometimes imprac-
tical. Perhaps an alternative choice would be to select a par-
ticular sample of size n, and then compute the maximum like-
lihood estimate, Of,. Let that be representative value when
n = ni. Then to compute a representative value when n = ny +
1 = ng, we retain the sample of size ny, and simply pick one more
element to increase the size to ny + 1 = Ng and then compute the
maximum likelihood estimate based on this particular sample size
ng. This process may be continued to generate the elements of the

set,

Having defined the maximum likelihood estimator set as fuzzy,
we now proceed to show the procedure that could lead to its.
asymptotic efficiency. Recall that the asymptotic efficiency of the
maximum likelihood estimator is the following: For large sample
size, n, the maximum likelihood estimate, 6,,, approximates close-
ly the unknown true parameter 6

Let « be any real number near 1 but never greater than 1. The
asymptotic efficiency of the maximum likelihood estimator set
would be equivalent to showing that @ = Max Ap(6oMm). More
generally, let (C(M) be the subset of all points in M at which « is
essentially attained, then this subset is called the core of M.
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The idea behind the proposed equivalence above is that the
maximum likelihood estimator set .is an increasing sequence of
points leading to 8,. Now, since < is very close to 1 (but never
greater than 1), and since « is the maximum of all the values of
the membership function for M, then the maximum likelihood
estimate with the highest sample size must approximate closely
the true parameter 8. For finite population we expect « to equal 1
when the sample size equals the population size, for in this case
the true parameter 8, can be computed precisely; but for infinite
population we expect it to tend to 1.

In effect, the numerical value of o may be taken as a quan-
titative measure of the asymptotic -efficiency of any-estimator.
That is, an estimator with an « closer to°1 would*be more
asymptotically efficient than one further from it. Thus, we
can also show that the maximum likelihood estimator set con-
tains the most asymptotically efficient estimates among all other
estimators. In this case, we have to estabish that the “para-
meter space” generated by the different types of estimators
are fuzzy. This can be done, logically, in the same way that the
maximum likelihood estimator set was established.

The concept of fuzzy sets is still nascent and perhaps will
take sometime for it to be well-established. The establishment
of the concept on firmer and more rigorous grounds could be
one breakthrough into a unification of the proof for the asymp-
totic efficiency of the maximum likelihood estimator. More ri-

gorous development in the concept of fuzzy sets itself is also

awaited. Until such an appropriate time, a detailed and rigo-
rous proof will be in order which will definitely constitute an
interesting topic for further research.
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